Simulating the Earth's radiation belts with continuous losses to the magnetopause

Sarah Glauert Richard Horne, Nigel Meredith

British Antarctic Survey Cambridge UK

The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreements number 262468 (SPACECAST) and number 284520 (MAARBLE), and is also supported in part by the UK Natural Environment Research Council

Outline

- Diversion Low frequency chorus
 - Diffusion rates
 - Effect in simulations
- Simulations with continuous loses to the magnetopause
 - Background BAS Radiation Belt Model
 - Boundary conditions
 - Simulations under steady conditions
 - Comparison with data
 - Model location of the last closed drift shell

BAS chorus matrix

- Horne et al. [JGR, 2013]
- Data from 7 satellites
- Upper and lower band chorus
- Frequency spectra determined for:
 - 5 levels of activity AE or Kp
 - All MLT 3 hour bins
 - $0 \le |\lambda| \le 60^\circ$, 6° latitude bins
 - $1.5 \le L^* \le 10$ in bins of 0.5 L*
- Wave-normal angle model
 - peak 0°, spread tan(30°)
- $10 \text{ keV} \leq \text{Energy} \leq 30 \text{ MeV}$
- f_{pe}/f_{ce} from new model based on CRRES and THEMIS

Diffusion rates

Upper, lower & lf chorus

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

 $100 \text{ nT} \le \text{AE} < 200 \text{nT}$

Effect in Simulations

CRRES data 100 days 1 MeV (90°) *Glauert et al.* [JGR, 2014]

Simulating the Earth's radiation belts with continuous losses to the magnetopause

BAS Radiation Belt Model

• Drift averaged, 3d model uses Fokker-Plank equation in α , E, L*

$$\frac{\partial f}{\partial t} = L^2 \frac{\partial}{\partial L} \left(\frac{D_{LL}}{L^2} \frac{\partial f}{\partial L} \right) \Big|_{\mu J} + \frac{1}{g(\alpha)} \frac{\partial}{\partial \alpha} \left(g(\alpha) D_{\alpha \alpha} \frac{\partial f}{\partial \alpha} \right) \Big|_{EL} \qquad A(E) = (E + E_0)(E + 2E_0)^{\frac{1}{2}} E^{\frac{1}{2}} \\ g(\alpha) = \sin \alpha \cos \alpha (1.30 - 0.56 \sin \alpha) \\ + \frac{1}{A(E)} \frac{\partial}{\partial E} \left(A(E) D_{EE} \frac{\partial f}{\partial E} \right) \Big|_{\alpha L} - \frac{f}{\tau(\alpha, E)}$$

- Chorus and hiss diffusion based on wave data
 - Driven by Kp as no AE forecast available
 - Chorus for $1.5 \le L^* \le 10$ Meredith et al. [JGR, 2012]
 - Horne et al. [JGR, 2013], Glauert et al. [JGR, 2014]
- Radial diffusion Brautigam & Albert [JGR, 2000]
- Collisions Abel & Thorne [JGR, 1997]
- Plasmapause O' Brien & Moldwin [JGR, 2003]

Boundaries

- $L_{\min} \leq L^* \leq L_{\max}$
 - $L_{min} = 2$ $- L_{max} = 10$
- $0 \le \alpha \le 90^{\circ}$
- $E_{min} (L^*) \le E \le E_{max}(L^*)$ - $E_{max}(L^*=10) = 20 \text{ MeV}$

 $- E_{min}(L^*=10) = 30.3 \text{keV}$

(average, Kp dependent f from CRRES)

Location of minimum energy boundary

For μ =100 MeV/G, f = constant for L*>5.5

Minimum energy boundary condition

- Average L* profile
 - CRRES data
 - Before March 1991 storm
 - Kp dependent
 (Kp<2, 2≤Kp<4, Kp≥4)
- Assume psd is constant for L*> 5.5

Formation of a radiation belt

- $2 \le L^* \le 10$
- Phase space density = 0 at L* = 10
- Start with 'empty' radiation belt
- Source on the low energy boundary
- Run model with fixed Kp=2 for 30 days
- If losses to the slot region and magnetopause dominate acceleration then no belt will form

Formation of belt from low energy source

- 700 keV ~1 day
- 1.5 MeV ~2 days
- 3 MeV ~6 days

Plasmapause

After 30 days

- Peak flux moves inward with increasing energy
 - From psd to flux
 - Hiss is stronger at lower energies
 - Inner side of peak eroded more at low energies
- Peak psd moves inward with increasing Kp
- Consistent with Walt, Horne et al. [JGR,2003], Subbotin & Shprits [JGR,2012] ...

Can we simulate data?

- Radial profile from average CRRES data
 - Assume psd constant for L*>5.5 (μ =100 MeV/G)
 - Scale according to psd for L*>5.5
- How to determine psd for L*>5.5?
 - Need a method that can be used for forecasting

PSD for L*>5.5

- Shin & Lee [JGR, 2013]
 - Model for flux on outer L boundary
 - Based on THEMIS data
 - Average for $7\text{Re} \le r \le 8$ Re on nightside
 - Driven by SW velocity
- Use this to set psd for L*>5.5
 - Assume model gives flux at 7.5 Re on equator
 - Calculate average L* for nightside (T89)
 - Find energy of boundary at this L*
 - Use Shin & Lee model to get flux for this energy

CRRES data

- 26 August 1991 (day 238)
- 6.5 days
- Good solar wind data
- Two storms:
 - Days 239 and 242
 - Both have flux dropout
- Dropouts
 - Day 239 L*~3.5
 - Day 242 L*~3

Model results

- Initial condition- data
- White line plasmapause
- 'Dropout' at each storm
 - Increased outward radial diffusion
- Dropout doesn't penetrate as far as in the data

Model for last closed drift shell

- Shue et al. [JGR, 1998]
 Magnetopause location
- Case and Wild [JGR, 2013]
 - Shue model overestimates by 1 Re
- Matsumura et al. [JGR, 2011]
 - LCDS vs. magnetopause location
 - Includes pitch-angle dependence
 - \rightarrow Pitch-angle dependent model for LCDS
 - Uses solar wind pressure and IMF Bz
 - Extra loss term outside LCDS : τ_{loss} = drift time/2

LCDS in model

- 782 keV electrons
- LCDS for $\alpha = 90^{\circ} red$

 $L_{LCDS} = 10$

- Dropout is enhanced
- Still does not penetrate to low enough L*
- Don't reproduce acceleration following second storm

Penetration of dropout

- May over estimate LCDS
- Radial diffusion may be underestimated Zhao & Li [JGR,2013]
- Yu et al. [JGR, 2013] Magnetopause losses account for dropout for L*>5
- Other processes
 - Low frequency chorus
 - Hiss in plumes

Lack of acceleration after second storm

- Driving chorus by Kp rather than AE
 - AE is better driver (Glauert et al. [JGR, 2014])
 - No forecast of AE available
 - AE ~1200nT on day 242

- Most active level in chorus model is Kp>4
 - Lack of data to fully define model for higher Kp
 - Kp = 6 for most of the period following second storm
- Model of low energy boundary
 - Current model won't capture dynamics of injection events
 - AE is high, so multiple injections are likely

Next steps

- Use data for the low energy boundary
- Better methods for low energy boundary condition
- Extend comparison with data
 - Van Allen Probes
 - THEMIS

Conclusions

- Existence and location of the outer radiation belt can be reproduced without the need for a source at the outer boundary.
 - Low energy electrons are accelerated by chorus waves to form the outer belt
 - Electrons are then transported inwards and outwards by radial diffusion
- Increased radial diffusion during active conditions results in features that resemble flux dropouts
 - Always have an outward gradient near the outer boundary
 - In active conditions there is increased acceleration due to chorus waves, but increased radial diffusion dominates resulting in loss to outer boundary
- Location of the last closed drift shell has been included in the model
 - results in increased dropouts during storms
- Low frequency chorus needs to be included in future models
 - Increases losses at high energies

